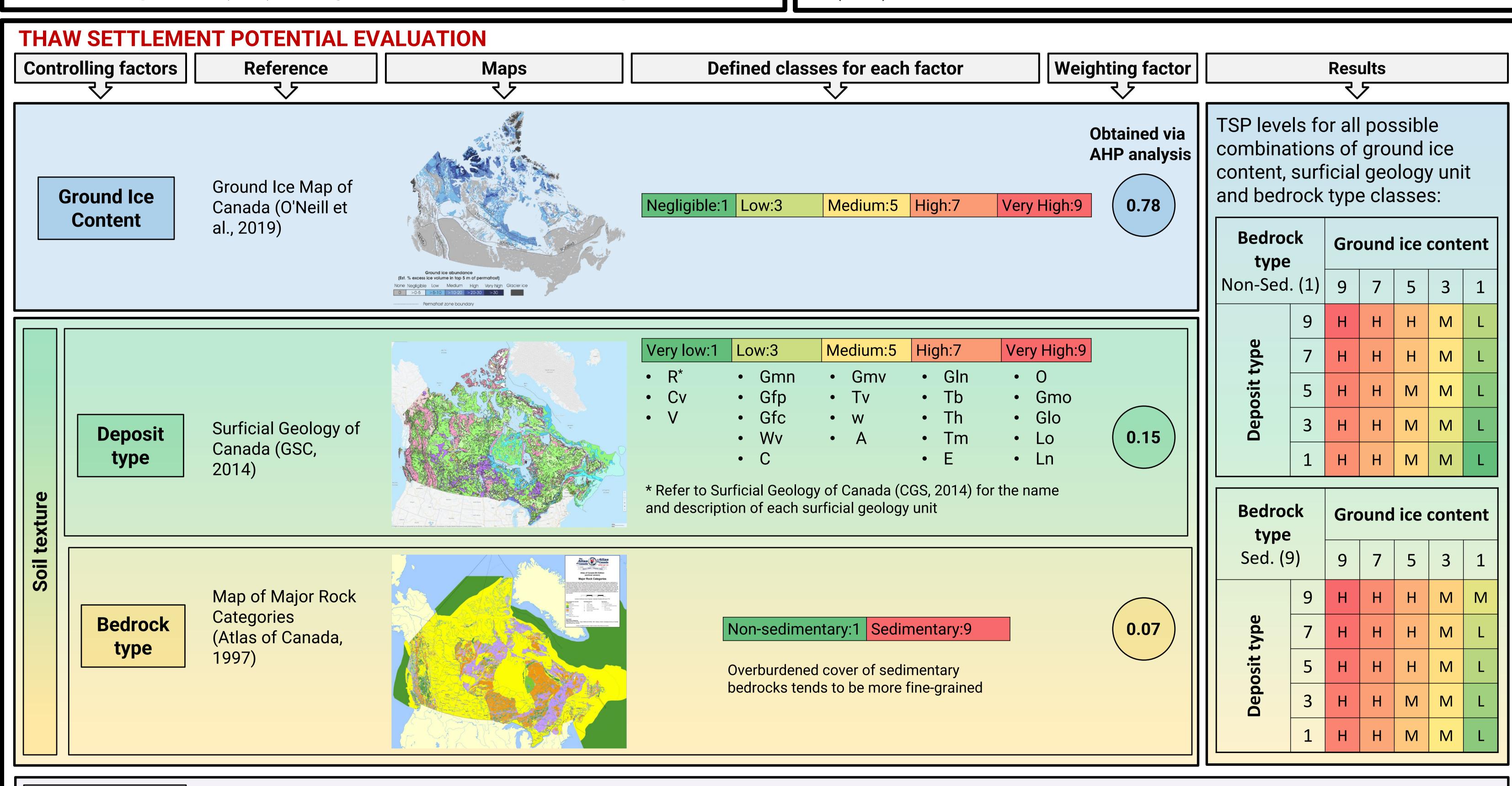
AN APPROACH FOR QUALITATIVE EVALUATION OF PERMAFROST THAW-SETTLEMENT POTENTIAL

Zakieh Mohammadi¹, Jocelyn L. Hayley²


Department of Civil Engineering, University of Calgary, Calgary, AB, Canada

INTRODUCTION & BACKGROUND

- ➤ Permafrost, which is ground that remains frozen for more than two consecutive years, is a key feature of Canada's northern lands.
- > Permafrost thaw, driven by climate change and construction-induced disturbance, is damaging infrastructure.
- > Thaw-induced settlement is a major contributor to high maintenance costs and compromised safety standards.
- > Evaluating thaw-settlement potential at a coarse scale is critical in the early stages of projects with large footprints. This allows for:
 - Comparing and screening multiple possible routes/locations based on thawsettlement vulnerability
 - Identifying the most vulnerable sections of a route that crosses various terrains/permafrost conditions
 - Planning more effectively for further investigation at a site scale
- > In this study, a systematic approach is proposed for qualitative evaluation of thaw settlement potential (TSP) at a regional scale due to near-surface permafrost thaw.

METHODOLOGY

- > Ground ice content and soil texture are identified as the main factors defining the thaw-settlement magnitude.
- > Soil texture is determined using surficial deposit type and bedrock type:
 - Surficial geology units are evaluated based on the possibility of having more fine-grained particles and organics, which are more thaw unstable.
 - Overburdened cover of sedimentary bedrocks tends to be more finegrained.
- ➤ It is conservatively assumed that near-surface permafrost, if present, eventually thaws.
- ➤ Identified three variables are compared using Analytical Hierarchy Process (AHP), based on their importance in defining the thaw-settlement magnitude.
- > A coefficient is obtained for each variable, and a numeric value is assigned to different categories defined for each variable.
- Using numeric classes and coefficients, Thaw-Settlement Potential Index (TSPI) is calculated.

Thaw-Settlement Potential Index (TSPI):

LOW There is a low probability of widespread thawsettlement; however, some

to localized conditions.

sites may experience it due

MEDIUM

Thaw-settlement is likely to be widespread. In order to minimize problematic settlement risk, an extensive site investigation is required to identify the settlement potential at a site scale.

TSPI = (Ground Ice Content x 0.78) + (Deposit Type x 0.15) + (Bedrock Type x 0.07)

HIGH

Widespread thaw-settlement is very likely. If construction is unavoidable, design measures should be implemented to keep permafrost intact to minimize the risk of thaw settlement.

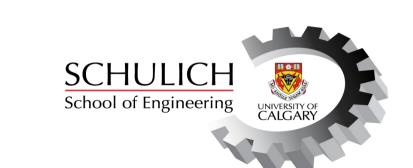
APPLICATION OF THE PROPOSED APPROACH

 Performing a preliminary assessment during the route or site selection process, with minimum effort, time and cost

2.5

Guiding city planners in selecting more stable ground for future development in the North

NEXT STEP


- To develop a Canada-wide map for the settlement potential
- To validate the approach by performing the assessment for case studies of thaw-settlement across Canada
- To enable a finer-scaled quantitative assessment using easily acquirable borehole data

REFERENCES

- 1. Atlas of Canada, "Major Rock Categories, Geological Map of Canada-Map D1860A," Atlas of Canada. Natural Resources Canada, Ottawa, ON, Canada, 1997.
- Geological Survey of Canada, "Surficial geology of Canada, Canadian Geoscience Map 195, Scale 1:5,000,000," Natural Resources Canada, Ottawa, ON, Canada., Ottawa, ON, Canada, 2014.
- 3. H. B. O'Neill, S. A. Wolfe, and C. Duchesne, "New ground ice maps for Canada using a paleogeographic modelling approach," The Cryosphere Discussions, pp. 1–37, 2019, DOI: 10.5194/tc-2018-200.

CONTACT INFO:

□ ¹seyedehzakieh.mohamm@ucalgary.ca