





## Linear Infrastructure and Permafrost Monitoring with Airborne SAR and Optical System – Theme 2

Usman Iqbal Ahmed

Supervisor: Bernhard Rabus

Affiliation: SARlab Simon Fraser University



#### Area of Interest (AOI)

**Base Station :** Silver City Airstrip Near Kluane Lake, Yukon **Area of Interest :** Alaska Highway near northern part of the Lake







#### Silver City Air Strip





#### Methodology

- Bi-Annual Airborne (Synthetic Aperture Radar) SAR and Optical Data collection over the AOI
- Time series analysis of Fodar (Photogrammetric) driven DEMS
- Interferometric SAR (InSAR) time-series analysis
- Motion Compensation from photogrammetric block adjustment parameters for enhanced SAR/InSAR measurements

(e.g. linear infrastructure change detection)





#### **Research Objective**

- Linear Infrastructure and Permafrost Monitoring
  - Direct Change with fodar driven DEMs
  - Indirect change with InSAR stack analysis
- Enhanced SAR Motion Compensation for improved SAR/InSAR product accuracy
- SAR/Optical Fusion
  - Land Cover / Land Use Segmentation
  - Change Detection for focused land types, etc

#### System Specifications and Configuration

• Fodar (Optical System)

SFU

- System Components
  - DSLR Camera (Nikon-D850)
  - Intervalometer
    - Synchronizes the Camera Flash events with the IMU data
  - Inertial Measurement Unit (IMU)
  - Agisoft Metashape<sup>®</sup> Professional Edition
    - Processing the photogrammetric data
- System Configuration
  - Oblique Looking vs Nadir Looking (Conventional)
    - Co-incident Optical and SAR footprint
    - More sensor fusion potential

















#### System Specifications and Configuration

- SAR System SlimSAR (X & L Band) and MicroASAR (C Band)
  - C & X Band in Across Track Configuration
    - Snow Penetration and Topography Generation etc
  - L-Band Along Track Configuration
    - Radial Velocity and Motion Compensation etc
  - Repeat Pass for Deformation Monitoring



| Parameter                  | X-band                    | L-band         | C-band     |
|----------------------------|---------------------------|----------------|------------|
| Waveform                   | Pulsed LFM                | Pulsed LFM     | LFM-CW     |
| Frequency<br>(GHz)         | 9.35 – 9.65               | 1.215 – 1.4    | 5.43       |
| Max.<br>Bandwidth<br>(MHz) | 245                       | 185            | 160        |
| Transmit<br>Power (W)      | 25 (+ 50 w/<br>amplifier) | 60             | 1.0        |
| Antennas                   | 1 Tx, 2 Rx                | 2 Rx/Tx        | 1 Tx, 2 Rx |
| Polarizations              | VV                        | HH, HV, VH, VV | VV         |

System Specifications





#### **Experimental Setup**

- Transport Canada Certified Mounts
- Helio-courier (propeller driven aircraft)
  - Operated IceField Discovery
    - Tourist flight operators







#### Fodar™

SFU

- Foto Detection and Ranging
- Photogrammetry Technique
  - Structure from Motion (SfM)
- Courtesy Fairbanks Fodar<sup>™</sup> Dr. Matt Nolan
- Different from conventional photogrammetry
  - COTS small format camera (DSLR) vs
    Sophisticated Photogrammetric Imagers
  - On-boards survey grade GPS/IMU vs Ground Control Points (GCPs) for georeferencing





SFU



#### Fodar Outputs & Research Objectives

#### **Outputs:**

- High Resolution DEMs ~10x10 cm<sup>2</sup>
  - Time series analysis Direct Change
  - DEMs as reference surface for SAR/InSAR chains
- Motion Compensation estimates for orbit refinement of Airborne SAR / InSAR with Photogrammetric Block adjustment parameters
  - Refined Interferometric measurements
  - Precise change detection time series / InSAR stack analysis

#### **Fodar Benchmarking**



105 Reference vs Nadir, Mean=.45 m, Std Dev=.78 m



SFU

Nadir vs Reference Mean 0.45 m Std Dev 0.78 m 🖁 01.026 **Oblique Vs Nadir** Mean 0.29 m Std Dev 0.74 m Oblique vs WorldDEM<sup>™</sup>

Mean 0.61 m Std Dev 1.04 m



Oblique vs WorldDEM<sup>™</sup>

Difference between Reference and Nadir (meters)







## **Motion Compensation Potential**





-0.4

Image No

SFU





Interferrogra



# **SFU** Fodar Analysis over Northern Site (Under Investigation)







April 2022 Orthomosaic & DEM







Difference of the DEMs





#### Future Work

- Motion Estimates from Photogrammetric block adjustment has improvement potential – yet to be tested
- Direct Change resulting from fodar DEM time-series analysis can be a strong tool at submeter scale under investigation