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INRODUCTION / BACKGROUND METHODOLOGY

Pel‘mafrOSt mOdelling can ContribU.te to iﬂfOfIHing adaptation in peI‘mafI’OSt I'egiOIlS by CharaCteriZing the SUbsurface SIMUL ATIONS Ground Surface temperature Simulations are produced using the modelling Software GEOtopz
thermal regime at different points in time. However, as models vary in their representation of physical phenomena, forced with JRA55, MERRA-2, and ERAS5 reanalysis data.

they also differ in performance at each location. This can make 1t difficult to make a justifiable comparison of two
simulation products, or to distinguish improvement in the representation of permafrost processes in modelling OBSERVATIONS  Observational ground temperature data from the NWT 1is collected from Carleton permafrost
software. database (COLDASS) and NSERC PermafrostNet ERDDAP.

Consistency 1n metrics for model evaluation provides an opportunity to better compare the relative strengths of
multiple models. In this study, we evaluate models under a range of accordance measures, for differing terrain types,
and temporal subsets. Through review and experimental testing, we aim to develop a ranking of simulation quality
that accounts for the specific characteristics of ground surface temperatures (GST) 1n permafrost areas.

ACCOMATIC The python package used to partition simulation and observational datasets and produce a
suite of summary statistics used to generate model rankings is called accomatic’. Each
simulation will be tested against a range of accordance measures, then split by season and
terrain type.
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Figure 1: Ground Surface Temperature site clusters across Canada (3) Surface Vegetation used to measure GST models can overlap. Figure 3: Daily mean GST data for th?algle)l cluster (n=23) with #-interval bootstrapping

visualization superimposed in blue rectangles.

RESULTS: SIMULATION PERFORMANCE ACROSS TESTING CONDITIONS
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Figure 4 below shows the results of three different Figure 5 shows RMSE bootstrap results with a 0.95 When simulations 10!
accordance measures being used to evaluate simulation confidence interval shown around each RMSE mean. are evaluated by 5
performance. While the JRA-55 simulation performs best While the JRA-55 model performs best over all (Fig 4), 1t Terrain type, we g 0
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Figure 4: r-interval bootstrapping results for RMSE, R’ and BIAS accordance measures. Additi 1l h h the MERRA-2 del i ked ’ I F
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While RMSE and BIAS show interpretable results, the t- Y s e , .
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. . . . RMSE of 10.1 in the Summer Figure 7: Terrain-type subsetting #-interval bootstrapping results using the RMSE
capturlng correlation (R2 1n Flg 4) . ' metric for four different simulations.
FUTURE WORK
This poster summarizes the findings of only the first iteration of using accomatic to evaluate model simulations and uses only a small subset of GST data. Future work includes:
1. Larger amount of GST data to allow for meaningful terrain type analysis (Fig 1) 4. More 1n depth description of terrain type subsetting and classification metrics.
Figure 2: Visualization of testing conditions for GST simulation ranking, 2. More rigorous parameterization of individual sites in GEOtop. 5. Additional analysis of seasonality (How do we define a season?)

including a variety of accordance measures, seasons and terrain subsetting.

3. Addition of CLASSIC model, driven by all three reanalysis datasets.




