Yukon Territory and western Northwest Territories, including Mackenzie Mountains and adjacent Mackenzie River Valley, with locations of all weather stations.

Performance of climate projections for Yukon and adjacent Northwest Territories.

Performance of climate projections for Yukon and adjacent Northwest Territories.

The design of infrastructure on permafrost must account for the impacts of a changing climate on ground stability. While guidelines like CSA PLUS 4011:19 provide a framework, choosing appropriate climate scenarios remains a challenge.

The study by Astrid Schetselaar, Trevor Anderson and Chris Burn reveals that observed warming in the Yukon and Northwest Territories (1991-2020) aligns with more extreme climate projections made in 2003 for the Mackenzie Gas Project.

Key takeaways for developers:

  • Consider adopting more aggressive climate change scenarios when designing permafrost foundations, as these projections have been more accurate.
  • Near-surface permafrost in southern parts of the region may become unsustainable. Thorough site investigations for thaw-stable soils are crucial.
  • Rising winter temperatures imply that the operational efficacy of thermosyphons, used to chill foundations, may be impeded.  At sites where preservation of frozen ground is essential for infrastructure integrity, the number of thermosyphons required may need to increase.

Schetselaar, A.B., Andersen, T.S., and Burn, C.R. 2023. Performance of climate projections for Yukon and adjacent Northwest Territories, 1991-2020. Arctic, 76(3). doi: 10.14430/arctic77263

Yukon Territory and western Northwest Territories, including Mackenzie Mountains and adjacent Mackenzie River Valley, with locations of all weather stations.
Yukon Territory and western Northwest Territories, including Mackenzie Mountains and adjacent Mackenzie River Valley, with locations of all weather stations.